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Abstract

Calculations are presented of the indentation of a spherical punch into an ideally plastic half-space under condition of complete
plasticity and taking account of contact friction, which is modelled according to Prandtl and Coulomb. Friction leads to the formation
of arigid zone at the centre of the punch when there is slipping of the material on the remaining part of the contact boundary. Limit
values of the friction coefficients are obtained for which the rigid zone extends over the whole of the contact boundary. The
dependence of the indentation force on the radius of the plastic area is in good agreement with experimental data.
© 2006 Elsevier Ltd. All rights reserved.

The solution of an axisymmetric problem of ideal plasticity concerning the stress distribution in a plastic region
accompanying the pressure of smooth flat and spherical punches on a plastic half-space with a linear boundary was
presented in Refs. 1-3. The velocity fields of a plastic flow, which satisfy the condition of non-negative energy
dissipation, were calculated and a statically admissible continuation of the stress fields into the rigid zone in the
problem of the pressure of a smooth spherical punch on a half-space with a linear boundary was pointed out.>* The
results of the modelling of the unsteady process of the indentation of a smooth spherical punch into an ideally plastic
half-space were presented and the shape of the free boundary of the plastic region around the punch was calculated.” In
the case of a smooth punch and large indentation radii, the calculated dependence of the indentation force on the radius of
the plastic area is found to be lower than the experimental dependence® as a consequence of the effect of contact friction.

Calculations of the unsteady process of plastic flow accompanying the indentation of a spherical punch into an
ideally plastic half-space when there is contact friction are presented below. Unlike the problems considered earlier, !~
the model presented shows the formation of a rigid zone of the material in front of the punch, which depends on the
friction. When contact friction is taken into account one obtains better correlation between the calculated dependence
of the indentation force for a spherical punch on the radius of the plastic area and the experimental data® compared
with the indentation of a smooth spherical punch.!=

1. Formulation of the problem and basic equations

Consider the indentation of a spherical punch into an ideally plastic half-space in cylindrical coordinates r, z, 0,
associated with the moving punch, with origin of coordinates at the lowest point of the punch. In these coordinates,
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Fig. 1.

the punch is fixed and the half-space moves along the z axis with the indentation velocity, which we will adopt as the
characteristic velocity of the problem and put equal to unity (V=1).

The form of the plastic region to the right of the axis of symmetry is shown in Fig. 1 for the case of the indentation
of a punch of radius R to a depth 4 relative to the undeformed horizontal boundary of the half-space. We will specify
the current stage of indentation by the angle a4 of the arc of contact of the punch with the plastic region. Since, at
the time of indentation, the plastic region has dimensions of the order of the length of the contact arc, we will adopt
the length of the contact arc Raig =1 as the characteristic dimension when calculating the plastic flow for the current
stage of indentation. In modelling the indentation process from the beginning of the contact between the punch and
the half-space up to the final depth of penetration with a radius of the plastic area Rsin a4, we will adopt the radius of
the punch R=1 as the characteristic dimension. We will also assume that the stresses are dimensionless, having been
divided by the yield stress of the material ay under uniaxial compression.

Assuming Tresca plasticity, three-dimensional plastic deformation of an isotropic, ideally plastic material occurs
with shearing along two slip planes, during which the stress state corresponds to the condition of complete plasticity
which, in the problem being considered, has the form

6, =0, 03=0,-1 (1.1)
in the space of the principal stresses.
The directions of the principal stresses o1 and o3 lie in the {r, z} plane and o is identical to the peripheral stress

p. In the case of condition (1.1), an axisymmetric problem of ideal plasticity is statically determinate and hyperbolic.>
The characteristics for the stresses and displacement rates coincide with the slip lines & and m in the {r, z} plane,

dz/dr = tgo nas & u dz/dr = —ctg@ mis 1M (1.2)
where ¢ is the angle between the tangent to the slip line £ and the r axis. The differential relations for o = (o + 03)/2
and ¢

dr—dz
2r

dr+dz

do—-d¢ = >y

along &, do+do = along M (1.3)

are satisfied along the slip lines and, in the case of the projections V¢, and Vy, of the velocity vector for displacement

onto the slip lines & and ,

ngr - V.ndz
2r

_Védz + Vndr

> along m (1.4)

dVe-V,do = - along &, dV,+Vido =

The displacement rates in cylindrical coordinates are connected with Vi and V,, by the relations
Ve = V,cosp+V sing, V, =V coso-V, sing

n
1% Vecos@ -V sing, V (1.5)

1
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r 2

Vesing + V, cos@

The differential relations (1.4) allow of discontinuities in the displacement rates V¢ and V,, along the slip lines £ and n
which, unlike the constant discontinuities in the rates under plane deformation, are variable owing to the inhomogeneity
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of relation (1.4) and are given by the expressions.””
Vel = < vy = 2
d=7 =2 (1.6)

The constants C; and C; are determined by the kinematic boundary conditions of the problem.

In Prandtl and Hill problems on the indentation of punches accompanying plane deformation, the kinematic joining
of the rigid and plastic regions leads to constant discontinuities along the rigid - plastic boundaries. In axisymmetric
problems on the indentation of punches with a plastic region containing an axis of symmetry, when C| # 0 or C; # O the
discontinuities in the velocities along the rigid - elastic boundaries increase without limit as » — 0. In order to preclude
an unlimited increase in the velocities on the axis of symmetry, it is assumed that C; = C> =0, which corresponds to con-
tinuity of the velocities on the rigid - plastic boundaries. Kinematic joining of rigid zones, which have different velocities
and bounded slip lines with a common point on the axis of symmetry, is achieved using the self-similar singular solution
in a small neighbourhood of the point of intersection of the rigid - plastic boundaries with the axis of symmetry.””

The condition for the rate of dissipation of energy of the plastic flow to be non-negative

D = 0,€,+ 0,8, + 036,20 1.7

must be satisfied in the plastic region, where €1, £ and &3 are the principal strain rates. In the case of complete plasticity
(1.1), the inequality &3 <0 follows from condition (1.7) and the incompressibility condition & + &> + €3 =0, which
shows that the dissipative function is non-negative if the rate of elongation of a linear element along the trajectory of
the stress o3 is negative. In curvilinear coordinates associated with the directions of the principal stresses o3 and o,
this equality has the form

dV;—V,dp<0 (1.8)

where do is the angle of rotation of the tangent to the element of an arc of the trajectory of the stress a3, V3 and V;
are the projections of the velocity vector onto the directions o3 and oy which are connected with V¢ and V;, by the
relations

Vi = (Ve=VIN2, Vi = (Ve+ V)2 (1.9)

Inequality (1.8) is easily verified by numerical modelling of the indentation of a punch and displaying the slip lines in
the physical {r, z} plane and the displacement velocity fields in the plane of the hodograph {V,, V,} on the screen of
a monitor.

In the case of a smooth punch, the boundary of contact with the plastic region extends along the whole arc Rag
and the slip lines intersect this boundary at an angle of m/4. Friction at the contact boundary leads to the formation of
a rigid zone in the central part of the punch, which is bounded by the slip line m that intersects the axis of symmetry
at the point E at an angle of m/4 and the boundary of the punch at point G at an angle which depends on the contact
friction shear stress. This region is an “outgrowth” of the material in front of the punch, which is observed in practice
and is used to estimate the friction coefficient experimentally.'”

Slip of the plastic material along the punch boundary, with shear stresses which depend on the friction law, occurs
on the remaining part of the contact arc. In this paper, the Prandtl and Coulomb models of contact friction are used.
According to the Prandtl model, the shear stress of contact friction is assumed to be a constant of magnitude w and is
treated as a resistance to shearing of the contact layer, which depends on the lubricant, the state of the surface and other
factors. The value of w is limited by the shear yield point of the plastic material and can vary over a range 0 < < 1/2.
Prandtl friction is usually employed in technological problems in the theory of plasticity in the case of high contact
pressures. %! When modelling Coulomb contact friction, the shear stresses are calculated together with the unknown
normal stresses. The range of values of the Coulomb friction coefficient is found below; in this range the mean contact
shear stress for a specified value of fis close to the value of ., and the stress and velocity plastic flow fields for the
Prandtl and Coulomb models are close to one another.

We will model the indentation of a punch into a half-space by a sequence of loading steps, changing the angle of
the contact arc a4 from zero to the limit value, during which the structure of the field of the slip lines, shown in Fig. 1,
is preserved. For each step in the loading, we will calculate the free boundary AB, and the shape and dimensions of the
plastic region in the case of the boundary conditions for the stresses and displacement velocities cited below.
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2. Boundary conditions

We will write the equation of the punch boundary OA (Fig. 1) in the parametric form

r = sina/o,, z = (1-cosa)/o,, O<a<o, 2.1)

where a4 is the angle of inclination of the tangent at point A to the contact arc OA, which is adopted as a characteristic
dimension Royy = 1. When there is friction, the slip lines m intersect the contact boundary at an angle vy, which can vary
from zero in the case of a perfectly rough punch to /4 in the case of a perfectly smooth punch. The shear stress T and
the normal pressure p on the slip boundary AG are given by the relations

1 1.
T = 500527, p= isty—G 2.2)

where o is the mean stress, which occurs in expressions (1.3), and the angles y, ¢ and o are connected by the relation
Y=0-0+m/2 (2.3)

In modelling the Prandtl contact friction, we specify that 7=, (0 < < 1/2), we find the angle y from the first relation
of (2.2) and we find the angle ¢ at points of the slip boundary AG, which are specified by the angle a in relations (2.1).
In modelling Coulomb contact friction, we specify the friction coefficient f and, from expressions (2.2) and (2.3), we
obtain the non-linear relation between o and ¢

f(20 +sin2(@-a)) —cos2(¢—-a) = 0 24

Provided there is complete plasticity (1.1), the boundary AB of the plastic region, which is, free from external stresses,
finds itself in a state of uniaxial compression and coincides with the direction of the principal stress 03

The calculations of the velocity fields of the initial axisymmetric plastic flow accompanying the indentation of punches
into a half-space >*%? show an increase in the velocities of points in the free horizontal boundary AB from point B to
point A, which lead to the inclined rising and distortion of the free boundary of the plastic region around a spherical
punch, which is observed experimentally.®

In this paper, in modelling the unsteady indentation of a spherical punch, we assume that the boundary AB is a
smooth curve with a continuous change in the angle of inclination of the tangent from a maximum value 34 at point A
to zero at point B as a consequence of the continuity in the change in the displacement velocities along the rigid-plastic
boundary BCDE. The boundary conditions on AB for differential relations (1.2) and (1.3)

6 =-12, ¢ =n/4-P, P = -arctg(dz/dr) on AB (2.6)

follow from relations (2.5).
Since the boundary AB of the current stage of indentation is formed by point masses which are displaced from the
boundary A’B’ of the preceding stage of indentation, the differential relation for the displacements

ds/V = dh in AB 2.7

must be satisfied on this boundary, where ds is the mean modulus of the vector of the displacement of a point to
the current boundary AB from the preceding boundary A’B’ after a “time” dh, V is the mean modulus of the velocity
vector of the point being considered after a “time” dh, and dh is the increment in the depth of indentation h=zp. As a
consequence of the incompressibility of the plastic material, the volume which is forced out by a spherical segment of
a punch of height % is equal to the volume of the plastic region above the boundary z =zp. The relation between 4 and
the free boundary AB of the plastic region

B .
1 sino 1 -cosa
h = l{z,‘(ri—gzi)+2tfzrdr} ry = A, g = ——= (2.8)
rg 4

Oy oy

follows from this condition, where r4 and z4 are the coordinates of point A.
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Point A is a degenerate &-slip line with a polar singularity in the change of the stresses and displacement velocities
within the limits of the angle s of the centred fan

Yy = 3“‘(QA+[5A+Y) (2.9)

The inequality {s >0 defines the limit value of the contact angle oy and the depth of indentation of the punch 4 for
which the field of slip lines in the plastic region has the form shown in Fig. 1. From the first relation of (1.3) at the
singular point A and the boundary condition (2.6), we find o and ¢ at this point

6 =-(12+8), ¢ =mn/4-(B,+{), 0<{<y (2.10)

In the Prandtl model of contact friction, we find the angle vy, which determines the centred fan according to relation
(2.9) for specified ag and 4 from the first relation of (2.2) when T = . In the Coulomb model of contact friction, from
relations (2.2), (2.9) and (2.10) when & =1, we obtain the following non-linear equation for the angle y at point A on
the boundary of contact of the punch with the plastic region

cos2y+f(2(y+ocA+BA—%—§n)—sinZW/) =0 (2.11)

We will solve Eq. (2.11) by Newton’s iterative method.

For a smooth punch, the slip boundary GA coincides with the whole of the contact boundary OA and the central
rigid zone shrinks to the point O. On the other hand, there are limit values of the friction coefficients " and f* for
which the slip boundary GA shrinks to the point A, and point D coincides with point E on the axis of symmetry (Fig. 1).

We will determine the limit friction coefficients from the conditions that point D should be on the axis of symmetry
which the slip lines intersect at angle of /4. In the case of a known free boundary AB of the plastic region, we find the
coordinates of point D and the angle ¢ at this point from the solution of a Cauchy problem in the domain ABC for the
differential relations (1.2) and (1.3) and the boundary conditions (2.6) and a Goursat problem in the domain ACD for
the slip line AC and the singular point A with an angle of the centred fan . In this case, the rigid-plastic boundary BCD
is determined by the coordinates of point B and the angle 5. As a result, we obtain two functional equations which
determine the boundary conditions at point D

rp(W,rg) = 0, @p(y,rg)+m/4 =0 (2.12)

where rp is the radius vector of point B. We find the angle {s from these equations and the limit angle y" at point A
from relation (2.9). Then, from the first relation of (2.2), we find " in the case of the Prandtl model of friction and,
from (2.11), we find f* in the case of the Coulomb model.

If the friction coefficients satisfy the inequalities

O<pu<p* or O<f<f* (2.13)

we then determine the boundary EG of the central rigid zone. In this case, we find the angle y>v" at point A from the
first relation of (2.2) in the case of Prandtl friction, and from Eq. (2.11) in the case of Coulomb friction, and we find
the angle | from relation (2.9). We find the plastic region with the rigid-plastic boundaries EG and BCDE from the
solution of the sequence of boundary-value problems for the differential relations (1.2) and (1.3), which are Cauchy
problems in the domain ABC, Goursat problems in the domain ACD, problems of a mixed type in the domain AD|G
with the boundary conditions on the slip boundary AG and Goursat problems in the domain DD GE. The conditions
that point E should fall on the axis of symmetry leads to two functional equations for the coordinates of points F' and
B on the free boundary AB

re(rp, Tp) = 0, Qp(rgrp)+m/4 =0 (2.14)

where rp and rr are the radius vectors of points B and F.
As a consequence of relation (2.7), the free boundary AB is related to the kinematic plastic flow determined by the
differential relations (1.4) and the boundary conditions for the displacement velocities presented below.
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The displacement velocities are continuous on the rigid-plastic boundaries since these boundaries intersect the axis
of symmetry. On the boundary EG with the fixed central rigid zone, we have the condition

V§ = Vn =0 on EG (2.15)

The displacement velocities V,, =0 and V, =1 are specified on the boundary BCDE of the half-space with the rigid
zone. From the first of relations (1.5), we find
Ve = sing, V, = cos¢p on BCDE (2.16)

On the slip boundary AG, the component of the velocity vector which is normal to the boundary is continuous, and the
boundary condition

Vg = Vntgy on AG (2.17)

follows from this, where the angle vy is the angle of inclination of the slip line m to the boundary of the punch, which
is related to the angles ¢ and « by relation (2.3).

3. Numerical solution

In modelling the indentation of a spherical punch, the technique for calculating the unknown free boundary AB
of the half-space around the punch which, as a consequence of the hyperbolic character and static determinacy of
the differential equations for axisymmetric plastic flow, determines the stress and displacement velocity fields in the
plastic region using the boundary conditions presented in Section 2, is a fundamental problem in the algorithm for its
numerical solution.

Calculation of the boundary AB from differential relation (2.7) using the numerical results of calculations of the
slip lines and displacement velocities on the boundary A’B’ obtained at the preceding stage of the indentation of the
punch for a specified step size dh leads to the following difficulties.

To calculate the new boundary AB correctly using the known preceding boundary A’B’, it is necessary to take
account of the rapid change in the boundaries of the plastic region and the displacement velocity fields accompanying
the punch indentation step dh, especially at the first stage of the indentation starting from the point contact of the punch
with the half-space. As a consequence of the singularity of the slip lines and the displacement velocity fields at the
singular point A’, the calculation of the new point of contact A of the punch with the free boundary of the plastic region
represents a difficult problem. As a consequence of errors in the numerical calculation of the nodal points of the slip
lines and the displacement velocities, which accumulate when solving the sequence of boundary-value problems, the
boundary AB which is calculated is inaccurate and piecewise-linear. Continuation of the calculations of the slip lines
and displacement velocities from this boundary on further indentation of the punch is only possible after smoothing it
out with a continuous curve.

In this paper, the unsteady indentation of a spherical punch taking account of contact friction, is modelled using a
semi-inverse method for calculating the free boundary of the plastic region, was used earlier in Ref. 5. We will assume
that the free boundary AB is a smooth curve with a monotonic decrease in the angle of inclination of the tangent 3 from
its maximum value B4 at point A on the boundary of the punch to zero at point B on the boundary of the half-space.
This assumption agrees with the velocity distribution on the free boundary of the half-space in problems concerning
an initial plastic flow and with the experimental data which have been discussed above.

We will model the indentation process with an increasing sequence of values of the contact angle o4 from zero to a
finite value, which satisfies the inequality {s > O for the centred fan of slip lines at point A. Here, the singular point A is
defined by relations (2.1) and corresponds to the specification of the radius of the plastic area, while the corresponding
value of the indentation depth # is found after calculating the boundary AB and the numerical solution, with a check
of the error of the differential relation (2.7) at points of the free boundary.

We will approximate the change in the angle of inclination of the tangent (3 on the free boundary AB by a power
dependence on the radius

B=PBa1-p"), p=(r—r)lrg—ry) (3.1)
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where r4 and rp are the radial coordinates of points A and B. The parameter 7 in relation (3.1) enables us to change the
curvature of the boundary AB in order to satisfy the kinematic condition (2.7) more accurately. From relations (3.1),
we find the dependence of r on 3 from the condition r=r4 when 3 =34

r=ry+(rg—ryexp{n  In(1-B/B,)}. 0<P<P, (3.2)
We calculate the boundary AB by numerical integration of the equation
dz/dr = —th (33)

using relations (3.1) and (3.2) for a uniform step size with respect to the angle (3 and specified values of the parameters
rB, Ba and n. The coordinate zp of point B is equal to the indentation depth 4.

We find the angle 34 at point A from the integral incompressibility condition (2.8) by Newton’s iterative method,
while treating expression (2.8) as an implicit function of 4. In the initial approximation, ,Bg = 0.8a4 and the angle
B4 is determined with an accuracy of 10~ practically instantaneously.

We find the slip line and displacement velocity fields by numerical solution of a sequence of boundary-value
problems of the Cauchy, Goursat and mixed type, starting from the free boundary AB for an increasing sequence of
values of the contact angle d4 from zero to a finite value, which satisfies the inequality Js>0. At regular nodes of the
mesh of slip lines, which do not belong to boundaries, we calculate the coordinates of the nodes and the values of the
functions o and ¢ by an iterative method.?°

After integrating Eq. (3.3), the radius vector of point B is determined for a specified value of the coordinate rp,
and the system of equations (2.12) for determining the limit friction coefficients depends on the two scalar variables
s and rp. Since the equations for an axisymmetric flow are determined subject to the condition that > 0, a numerical
solution of system (2.12) cannot be successfully obtained using standard methods, since the functional matrix of this
system when r — O turns out to be ill-posed. The solution of system (2.12) was found by varying the values of rp in the
initial data of the computational program and solving the second equation of (2.12) for the variable {s using Newton’s
method with an accuracy of 10~*. The first equation of (2.12) is solved with an accuracy of ~10~* for values of rz
specified with an accuracy of 1074

If the friction coefficients are less than the limit values, then, on the slip boundary AG, we calculate a sequence
of nodal points which satisfy boundary conditions (2.3) or (2.4) when modelling Prandtl or Coulomb contact friction
respectively. Point 1, on the &-slip line close to the punch boundary, at which o and ¢ are known, is shown in Fig. 2
as well as the point P of the intersection of this line with the punch boundary, at which ¢ and ¢ are unknown. On
replacing the first equation of (1.2) and the first relation of (1.3) by finite differences between the points 1 and P, we
obtain the relations

A

=2 = (r-ngd, ¢ =(9+9)2 (3.4)
6 =0,+0-@,—(r;—r+z,-2)/(r;+r) (3.5)

where known quantities at point 1 are labelled with the subscript 1. The coordinates r and z of point P and the angle ¢
at this point are determined by relations (2.1) and (2.3).

When modelling Prandtl friction, the angle vy in relation (2.3) is determined by the friction coefficient . =7 from the
first relation of (2.2). In this case, substitution of expressions (2.1) and (2.3) into relations (3.4) leads to a transcendental
equation for the angle o, which determines the coordinates of the point P on the punch boundary

(r;—sina/oy)tgd + (1 - cosa)/o, —z; = 0

¢ = (a+y+@,—7/2)2 (3.6)

Fig. 2.
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Equation (3.6) was solved with an accuracy of 10~* using Newton’s method. The initial approximation a” was found

from equation (2.1) for the point of intersection of the punch boundary with the straight line which passes through
point 1 with an angle of inclination ¢1. From relations (2.1), (2.3) and (3.5) we next find the coordinates of the point
P and the magnitudes of ¢ and o at this point.

When modelling internal Coulomb friction, from relations (2.4), (3.4) and (3.5) we obtain the following system of
non-linear equations for ¢ and « at the point P

Az-Artgd =0 (3.7

%(f‘lcose— sin@) -6, -@+ ¢, + (Ar+Az)/(r;+r) =0 (3.8)
where

Ar =ri-r, Az=2z-2z, ¢ = %((p+(p1), 6 =2(p-a)

and the coordinates r and z at the point P are determined by relations (2.1) in terms of the angle «. Equations (3.7) and
(3.8) were solved using Broyden’s method!? with an accuracy of 10~ using the values of ¢ and « from the preceding
mesh points on the punch boundary, beginning from point A, as the initial approximation. The value of ¢ at the point
P was then found from relation (2.4).

The radius vectors of points B and F, which determine the boundary of the plastic region and the slip boundary AG
by relations (2.14), were found by integrating differential equation (3.3) during calculations of the free boundary AB,
specifying the coordinates of g and rr of these points. Equations (2.14) were solved with an accuracy of ~10~* by
varying the values of rp and rr in the initial data of the computational program.

After the slip line fields have been calculated, the rigid-plastic boundaries, on which the boundary conditions
(2.15)—(2.17) are specified for the displacement velocities, are determined. The numerical solution of differential
relations (1.4) with boundary conditions (2.15) and (2.16), using the finite-difference relations presented earlier in Ref.
8, gives a linear system of equations for the displacement velocities at the regular nodes of the slip line mesh.

The second differential relation of (1.4) and boundary condition (2.17) were used to calculate the displacement
velocities at the mesh points on the slip boundary AG. Point 2 on the m-slip line close to the punch boundary, at which
the displacement velocities are known, and the point P of the intersection of this line with the punch boundary are
shown in Fig. 3. Approximating the second differential relation of (1.4) by finite differences between the points 1 and
P, we obtain

1 1
Vo= Voo + 5(Ve+ Ve (@ - 92) + 5[(Ve + Ver)Az + (Vo + Vi) Arl/(r+7) = 0 (3.9)

where

Ar =r-r,, Az =12z-2

and known quantities at point 2 are labelled with the subscript 2. Since the coordinates r and z and the angle ¢ are
known after determining the slip lines at points on the punch boundary, relation (3.9) together with boundary condition
(2.17) form a linear system of equations from which we find the velocities V¢ and V;, on the slip boundary AG. After
solving the boundary-value problems for the displacement velocity fields, we obtain the velocities at the mesh points
on the free boundary AB

Fig. 3.
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For a small indentation depth 4, the left-hand and right-hand sides of kinematic condition (2.7) are of the order of
1073, the angles oy and B4 are small and the boundary AB is almost linear. For a value of the parameter n=1.65 in
relation (3.1) in the case of the maximum Prandtl and Coulomb friction coefficients for the contact angles as =0.3 and
a4 =0.25 a mean relative error in condition (2.7) of ~10~2 and a maximum relative error of ~10~! was obtained for an
increment in the indentation depth A/ =0.0488. Hence, when the angles of inclination of the tangent at the mesh points
of the free boundary AB are approximated relation (3.1), we obtain an error in violating differential kinematic condition
(2.7) which is commensurate with the error in the numerical calculations of the slip line fields and the velocity fields.
It is possible that the use of other methods of approximating the free boundary AB can reduce the error associated with
the violation of condition (2.7).

We find the indentation force of the punch Q by numerical integration of the stress distribution on the rigid-plastic
boundary EG and on the slip boundary AG

0 = ZEEr[(—o)dr + %dz] + :[r[e sin2y — o)dr + %cos 27dzﬂ (3.10)

Since the problem being considered is of practical interest in hardness testing by impressing a rigid sphere into plastic
metals, the dimensionless Meyer’s numbers gy (the mean pressure for the projection of the plastic area onto a plane
perpendicular to the z axis) and Brinell’s numbers gp (the mean pressure on the plastic area) were also calculated.

2 2 2
gy = QI(nry), qp = Q/[T(ry+2,)] (3.11)
4. Numerical results
The results of calculations of the limit Prandtl and Coulomb friction coefficients " and f* as a functions of the

contact angle a4 and the corresponding values of the relative indentation depth //R, the relative radius of the plastic
indentation r4/R and the dimensionless hardness numbers gj; and gp are presented below

o 0 0.05 0.1 0.15 0.2 0.25 0.3
p10? 397 425 452 473 488 496 500
7103 146 169 180 190 196 200 203
(h/R)-10* 0 9 35 79 141 221 317
(ra/R)-103 0 50 100 149 199 247 295
am 3.026 3.014 3.003 2.991 2.979 2.969 2.957
qs 3.026 3.012 2.995 2.975 2.949 2.957 2.891

When a4 — O (the indentations of a flat circular punch without slip of the material along the boundary of contact),
the results of the calculations agree with those obtained earlier in Ref. 13.

The value of the coefficient " is equal to the shear stress on the boundary of the punch at point A. The value
of the coefficient f* is equal to the ratio of the shear stress to the normal pressure on the boundary of the punch at
point A.

It can be seen that, for a small indentation depth, the limit friction coefficients . have high values, which are close
to the corresponding values for a perfectly rough punch. If the friction coefficient lies in the interval of limit values,
then, at the initial stage of the indentation of the punch up to the corresponding value of the contact angle aq or the
radius of plastic area, the central rigid zone extends to the whole boundary of contact. When the punch is impressed
further, the central rigid zone will only extend to a part of the boundary of contact with the punch, and the slip boundary
AG appears.

The slip lines in the {r, z} plane and their mapping onto the plane of the hodograph of the displacement velocities
V, and V, for a contact angle ay =0.3 at which the friction coefficient " takes a limit value of 0.5 are shown in
Figs. 4 and 5. In this case, the boundary AD of the central rigid zone is directed along the tangent to the boundary of
the punch at point A. When the punch is impressed further when o4 > 0.3, a slip boundary appears around the point A,
which will be the envelope for the slip lines of the family .

As a consequence of the change in the velocity V, from unity to zero at point D, a singular displacement velocity
field, which has been presented earlier in Ref. 13, arises in the neighbourhood of this point. Owing to this, a rapid
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change in the velocity is obtained along the slip lines closest to the rigid-plastic boundaries AD and BCD. The plastic
region ABC (Fig. 4) is mapped onto the plane of the velocity hodograph (Fig. 5) by a narrow segment with a reduction
in the velocity V3 along the trajectory of the principal stress o3, with which the boundary AB coincides. In the plastic
region in the physical plane (Fig. 4), the curvature of the trajectories of the principal stress a3 is positive (d¢ > 0), the
projections of the velocity vector V3 and V) are positive and V3 decreases along the trajectories of a3 (Fig. 5). The
inequality (1.7) is satisfied over the whole of the plastic region and the dissipative function D is positive. The statically
allowable continuation of the stresses into the rigid zone in the case of the slip line field accompanying the indentation
of a spherical punch has been presented earlier in Ref. 3.

An example of the calculation of a slip line field when a punch is indented up to a contact angle ay =0.3 for w=0.3
with a distribution of the normal pressure o, on the slip boundary AG, which increases from 2.372 at point A to 3.253
at point G is shown in Fig. 1. In this example, the indentation depth and the mean pressures on the punch are given by
the equalities //R=0.03, g)y=2.878 and gp =2.814.

When testing the hardness of metals by indenting a sphere and when developing machine components with plastic
deformation of the surface layer with a spherical indentor, the friction coefficients are considerably less than the limit
values presented at the beginning of this section. In these processes, a central rigid zone is formed from the very
beginning of the indentation of the punch and also a slip boundary AG in accordance with the scheme shown in Fig. 1.

The results of calculations of the relative values of the indentation depth of the punch A/R, of the depth of the central
rigid zone on the axis of symmetry —zg/R, the radial boundary of the central rigid zone on the punch surface rg/R and
the dimensionless hardness numbers are presented in Table 1 as a function of the contact angle o4 for three values of
the friction coefficient which are possible in the technological problems considered above. The dimensionless radius
of the plastic area is determined by the contact angle r4/R=sin a4.

Calculations show that the mean pressures on the punch in the case of Coulomb contact friction when f=0.05 and
Prandtl contact friction when p=0.1 are close to one another for equal radii of the plastic area, but the sizes of the

V.

z




456

R.1. Nepershin / Journal of Applied Mathematics and Mechanics 70 (2006) 446—458

Table 1
ay au qB h/R-10* —(ze/R-10%) rg/R-10* qaum qs h/R-10* —(z£/R-10%) rg/R-10*
w=0.1 =02
0.1 2.86 2.85 33 54 62 2.93 2.92 34 193 254
0.2 2.78 2.71 131 73 79 2.87 2.84 134 279 361
0.3 2.70 2.64 291 89 106 2.80 2.74 298 328 424
0.4 2.62 2.51 510 99 113 2.73 2.62 521 349 444
0.5 2.54 2.38 782 111 125 2.63 2.50 798 370 468
£=0.05
0.1 2.88 2.88 34 134 168
0.2 2.80 2.78 133 198 247
0.3 2.72 2.66 295 242 300
0.4 2.64 2.53 514 275 341
0.5 2.55 2.40 793 280 333
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central rigid zone under the punch are much higher in the case of Coulomb contact friction than in the case of Prandtl

contact friction.

The slip lines in the {r, z} plane and their mapping onto the displacement velocity hodograph V, and V; in the case
of the indentation of a spherical punch up to a contact angle a4 =0.5 with a Coulomb friction coefficient f=0.05 are
shown in Figs. 6 and 7. The slip line fields and the displacement velocity hodographs in the case of Coulomb contact
friction and Prandtl contact friction when w=0.1 hardly differ. However, the dependence of the contact shear stress
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BCDE Q
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\}>/A
0.5 \)y
0BG S—
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Fig. 7.
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on the pressure in the case of Coulomb friction leads to a reduction in the angle of inclination of the slip lines m to the
punch boundary and the formation of a central rigid zone with larger dimensions. The condition that the dissipative
function must be non-negative is also satisfied in the example considered. The distribution of the contact pressure o,
in the slip boundary AG is shown in the upper part of Fig. 6. This pressure increases from 1.876 at point A to 3.632 at
point G. At the same time, the shear contact friction stress also increases from 0.0936 at point A to 0.1816 at point G.

The change in the boundaries of the plastic region and the central rigid zone when the punch is indented up to a
contact angle oy =0.5 in the case of a Prandtl friction coefficient w=0.2 is shown in Fig. 8. At the beginning of the
indentation of the punch at small contact angles, the free boundary AB only deviates slightly from a horizontal line.
The slip line field in this region, including a flat punch when a4 =0, and the contact stress distribution are identical
within the limits of the error of the numerical calculations with the solutions of the problem of the initial flow of a
half-space with a horizontal boundary.'~*

A comparison of the calculated dependences of the dimensionless indentation force Q/(oyR?) on the radius of the
plastic area in the case of a smooth punch when =0 and punches with a Prandtl friction coefficient =0.1 and a
Coulomb friction coefficient f=0.05 (the solid lines) with experimental data on the indentation of a polished tungsten
carbide ball into prehardened copper® (the open circles) is shown in Fig. 9. The yield stress oy was found using the
experimental relation® oy(ep) with the average values of the accumulated plastic deformation g, presented earlier in
Ref. 5. When r4/R < 0.3, the calculations using the present model were practically identical to the experimental data and
to calculations of the indentation of a smooth punch into a half-space with a linear boundary.'-3* As the radius of plastic
area increases, the experimental data are in good agreement with the calculated values obtained taking account of contact
friction when w=0.1 and f=0.05. The relation obtained earlier'>** is practically identical to the relation for p.=0.1 and
astonishingly close to the experimental data. The horizontal boundary of the half-space assumed in Refs. 1,3,4, as well
as contact friction, leads to an increase in the pressure on the punch compared with the calculations for a smooth punch.
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